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ABSTRACT
Inductive Program Synthesis (IPS) is an attractive goal for
AI researchers as it provides a solution to the problem of
getting programs to write code. Recent work has shown that
neural networks are efficient tools for improving the perfor-
mance of IPS tasks, and in this paper we formulate several
approaches to IPS using state-of-the-art ML neural network
architectures. In this work, we review the current field of neu-
ral architectures used in program synthesis and we further
present a novel formulation for the introduction of Graph
Neural Networks in search-guided synthesis methods..

1 INTRODUCTION
The ability for computers to create and understand human-
readable source code is an attractive goal with profound
implications for software engineering and security research.
When trained properly, algorithms can take in natural text
descriptions of problems to generate source code that solves
them [10]. When machines can evaluate complex code bases,
they are capable of automatically identifying otherwise opaque
privacy bugs [16]. Along these lines, Inductive Program Syn-
thesis (IPS) is the problem of taking input-output pairs and
generating source code that, when executed on the pro-
vided inputs, produces the correct corresponding outputs.
Researchers have formulated two major approaches to solv-
ing this problem: (1) “differential interpreters” which aim to
learn the structure of the underlying program directly [6]
and (2) search-oriented strategies which attempt to learn
various properties of a program that are useful in guiding
a search through the traversal of possible programs [2][8].
Currently, both approaches have their individual drawbacks:
differential interpreters often fail to synthesize the correct
program [6] whereas search-based approaches are limited in
scope by prohibitively large spaces of possible programs.
In this paper, we propose an improvement to search ori-

ented strategies. For our proposed improvement, we attempt
to improve the search-based approach laid out in Balog et
al.’s DeepCoder research [2], which uses a feed-forward neu-
ral network (FFNN) to learn which functions are likely to be
consituents of a program that correctly maps the provided
input-output pairs. Specifically, DeepCoder uses a FFNN to
embed the input integers into vectors in a 20-dimensional

space and combines the list of embedded integers with in-
formation about the input/output to perform its predictions.
Our proposed improvement is to replace the simple FFNN
with a Gated Graph Neural Network (GGNN) [9] that will
provide a more intelligent embedding of the input/output
pairs. Because the GGNN takes in representations of graphs
as inputs, this architecture allows us to embed structural
information about data types beyond numerical value. Ba-
log et al. are able to infer probabilities of functions being
part of candidate solutions using the FFNN alone and recent
work has demonstrated that GGNNs can successfully learn a
program’s structure from the source code [1]; therefore, we
anticipate that GGNNs are at least equally capable of estimat-
ing constituent function probability. While the change of the
neural network architecture requires a slight reformulation
of the problem established by Balog et al., we believe that the
use of a GGNN will improve the accuracy of this function
prediction task on the initial domain and allow DeepCoder
to be extended to larger program spaces that include manip-
ulations over more complex data structures.

2 CHOOSING THE RIGHT NN FOR IPS
While our novel contribution in this paper is towards the
goal of improving DeepCoder’s search-based strategy with
GGNNs, we provide a review of other neural architectures
which have shown promising results in the field of program
synthesis.

Improving Generalization with Greater Attention
DeepCoder is an algorithm that searches for solutions consis-
tent with a small set of input/output pairs. Balog et al. make
no mention of the generalizability of the programs that Deep-
Coder produces [2]. In particular, the authors do not report
the rate at which the programs produced are inconsistent
with further input/output pairs generated by the same un-
derlying ground-truth program. In general, generalizability
is a large concern when learning from “programming-by-
example”, as a neural network might simply learn to the
produce a lookup table for the provided input/output as its
target program: a strategy that will always be consistent but
very rarely generalizable. Although Balog et al.’s strategy of
guiding search over a specific Domain Specific Language



(DSL) means that the internal AI is unable to define such
lookup tables, the question of generalizability remains.
In Devlin et al.’s RobustFill paper, the authors perform

a study about how the generalizability of synthesized pro-
grams compares with the level of complexity used in the
AI that learns the structure of the underlying program [5].
Devlin et al. use increasingly complex Recurrent Neural Net-
work (RNN) architectures to produce programs that solve
provided input/output pairs. Specifically, Devlin et al. train
four sequential LSTMs of the same size but use increasing
levels of attention added among the same constituent pieces.
In general, they find that increased attention in the LSTM
results in programs that are more likely to generalize to ad-
ditional input/output pairs. This suggests that DeepCoder’s
use of a single network with neither attention nor recur-
rence leaves significant room for improvement in the area
of generalizability.
We note additionally that the authors’ strategy for pro-

gram synthesis uses a Beam Searching decoder to predict
the next token of the program as each token is generated.
This strategy differs somewhat from Balog et al.’s, which
passes the results from its FFNN as a pseudo-heuristic for
a separate search algorithm. Indeed, this strategy of Beam
Search decoding appears to be somewhat more pervasive
in recent literature [6][4]. Although Beam Search decoding
shows promising results, the advantage of DeepCoder’s sep-
arate guided search may be its speed. Devlin et al. cite an
amortized cost of 0.3 seconds per synthesis on a GPU [5],
while a version of DeepCoder generating a short satisfying
program on a MacBookPro’s CPU takes a similar amount of
time.

Learning vs. Synthesizing the Program
Devlin et al. also explore how their attention-heavy LSTM
is capable of learning to produce the proper outputs for a
given set of inputs on its own without first synthesizing an
additional program [5]. This line of work in program induc-
tion follows from Graves et al.’s 2014 work on Neural Turing
Machines, which provided an early demonstration of the ca-
pability for neural networks to learn to mimic the behavior
of an underlying program through training on input/output
pairs [7]. Devlin et al. show that program induction results
in similar generalizability performance to that of their most
simply trained program synthesis tool [5].

These promising results indicate that both program induc-
tion and program synthesis are useful in “programming-by-
example” tasks, although the applications of the two strate-
gies diverge signficantly. Program induction never produces
any source code, but the task of learning program repre-
sentations has been shown to have utility in evaluating the
correctness of existing source code [1]. The advantage of
program synthesis’ generation of source code motivates it

as worthy area of study: indeed, it is advantageous to ex-
plore strategies that produce source code while there are still
human programmers reading and using it.

Program Synthesis as a Sequence-to-Sequence Task
Sophisticated Neural Networks have been shown to be effec-
tive in machine translation tasks typical to NLP [13]. These
tasks fall under the broad category of "Sequence to Sequence"
transformations, and it is straightforward to formulate IPS
as a problem in this perspective. In this formulation, IPS
is the process of learning to map a set of n input/output
pairs {Xi = ((I1 . . . Ik ) ,O) | i ∈ [1 . . .n]} to a DSL program
P , which itself is a sequence of tokens t1 . . . tm . Sutskever
et al. explain that while simpler neural architectures are
unsuitable for Machine Translation tasks, networks with re-
currence and/or attention like LSTMs succeed [13]. These
results from NLP suggest that ISP might be successfully im-
plemented within a differential interpreter context, using
LSTMs with a corresponding decoder to turn example se-
quences directly into programs without the use of a separate
search strategy.
Poloshukin and Skidanov test the performance of a se-

quence to sequence program synthesis model in their 2018
paper [11]. In particular, the authors attempt to synthesize
programs from descriptions of program behavior rather than
from explicit examples of input/output pairs. This task thus
incorporates some additional challenge of parsing natural
language but nevertheless has the advantage of having ex-
plicit directions for the resulting programs when compared
to DeepCoder’s programming-by-example task. Indeed, this
may help to resolve the problem of deciding among equiv-
alent programs [2] since the natural language descriptions
of the programs can provide information about how they
should be structured in addition to the baseline information
about what they should do.

The authors find that an attentional sequence to sequence
neural model outperforms Devlin et al’s RobustFill model in
generating programs that correctly satisfy test cases writ-
ten based on the target programs, although Poloshukini
and Skidanov do not fully explain how they generate in-
put/output pairs that RobustFill expects [11]. The improve-
ment in performance of the sequencemodel over RobustFill is
dramatic—54% over 2.2%—although much of this difference
could be attributed to the slight incompatibility of Robust-
Fill for the task of program synthesis from natural language
description.
Even better than the sequence to sequence model, how-

ever, is the authors’ sequence to tree model. This model uses
a decoder that creates an AST in the DSL of the paper; that is,
the sequence to tree model outputs an abstract syntax tree
that defines a program rather than the program itself. This
trainable decoder gives the model an advantage in learning
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the syntax of the DSL, making it more likely to generate a
tree which represents a valid program [11]. Their sequence
to tree model outperforms the sequence to sequence model
61% to 54%, all without the use of a separate searching algo-
rithm.

Furthermore, in their comically named “Aint̀ Nobody Got
Time for Coding” paper, Bednarek et al. create a further im-
provement over the sequence to tree model, reaching as high
as 83% testing accuracy using their "Structure Aware Pro-
gram Synthesis" (SAPS) model [3]. Each of these sequence
to structure models suggest that the use of a differential in-
terpreter alone for program synthesis is indeed “plausible”
[3]. However, all of the models explored in Polosukhin and
Skidanov’s study are improved by the addition of a separate
search algorithm. Indeed, their sequence to tree model gener-
ated a correct program 86% of the time for the testing dataset,
beating out even Bednarek et al.’s intelligent SAPS model
[11]. All of this work on differential interpreters suggests
that sufficiently sophisticated neural models are effective for
program synthesis, and that the simple addition of a search
strategy on top of the neural models can serve to improve
accuracy even when the search itself is limited to only 100
candidate programs [11].

Leveraging the Transformer Architecture
With the promising results from the previously mentioned
attentional neural models, we suspect that the use of a Trans-
former architecture would provide further improvements in
the field of program synthesis. The Transformer is a simple
yet powerful architecure that provides groundbreaking per-
formance without including any computationally expensive
recurrence [15]. The Transformer has set new benchmarks in
the field of Machine Translation, suggesting that it would be
useful in the sequence to sequence interpretation of program
synthesis that these recent studies have performed. Further-
more, the lack of recurrence in the Transformer provides
it with significantly cheaper training costs when compared
with other successful models in the area of Machine Transla-
tion. Indeed, recent improvements in the formulation of the
Transformer model discovered through evolutionary archi-
tecture search have already improved the model’s accuracies
in Machine Translation while also shrinking the number
of parameters in the model to the “mobile-friendly” size of
seven million [12]. The availability of the Transformer in
the TensorFlow extention “tensor2tensor” [14] makes this
architecture appealing for further research in the task of
program synthesis through the lens of sequence to sequence
translation.

3 IMPROVING SEARCHWITH GGNNS
Graph Neural Networks
The architecture with which we propose to augment Deep-
Coder’s FFNN is adapted closely from Li et al.’s 2016 work on
Gated Graph Sequence Neural Networks (GGSNNs) [9]. We
choose to incorporate intoDeepCoder the simpler GGNN—an
atomic unit of the GGSNN—which lacks the power to trans-
late sequences to other sequences but is nonetheless able
to provide graph-level summary outputs. In particular, the
GGNN will (1) provide a context-sensitive embedding of the
vertices in the input structure and (2) pass these embedded
vertices through an additional pair of neural networks that
serve to predict the likelihood of each function appearing in
the correct program. This allows us to mirror the success-
ful strategy of embedding into encoding into decoding that
Balog et al. follow [2] while simultaneously adhering to the
tested structure of a GGNN.

Input Format
Not surprisingly, any form of GraphNeural Network requires
its input to be structured as a graph. Since DeepCoder’s DSL
recognizes only integers and arrays thereof, it is not difficult
to provide a transformation of input/output pairs to graphs.
First, we define a graph G to be a triple (V, E, lV), respec-
tively a node set, an edge set, a label function from nodes
to integers. In particular, this defines a directed graph with
integer edge weights and nodes containing integer values.
Second, we create a special “input” node vin , and for each of
the k arguments create a special “argument” node (v1

a . . .v
k
a ),

with an edge from the “input” node to the first “argument”
node, the first “argument” node to the second, and so on.
Then, convert each argument to a series of nodes as follows.
For a single integerm that is input argument i , create a node
v and an edge (via ,v) between “argument” node i and v and
define lV (v) =m. For a list of integersm1 . . .mn that is input
argument i , create a start node α , and end node ω, and nodes
vm1 . . .vmn for the integers of the list with lV(vmj ) = mj .
Add edges to create a single directed path from α to ω with
nodes vm1 . . .vmn connected in order along the way. The
process is repeated again for the output, replacing the “input”
node with an “output” node and “argument” nodes with a
“result” node. Finally, for every node v representing an input
integer (either alone or as part of a list), add an edge (v,v ′)

to every nodev ′ representing an output integer. An example
of this conversion is outlined in Figure 1.

We note that this transformation takes a pair of lists (the
inputs and the outputs to the program to be synthesized)
and creates a single graph structure; thus, when discussing
the data that is passed to the GGNN, we use only the term
input to represent the structure of the original input/output
pair. Although this conversion is somewhat verbose in the
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case of single lists and integers, it is far simpler in the case of
other inputs of interest like trees, heaps, or generic graphs.
In these cases, it is only necessary to add the relevant marker
nodes for inputs and outputs to the existing graph structure.

GGNN Architecture
We closely adapt the architecture that Li et al. lay out in their
work. Thus, we must define a strategy for node annotation,
the propagation model, and the output model [9].

Node Annotations. Node annotations are the means by
which we encode information about the input vertices into
the learning task. This mirrors the step in DeepCoder where
information about input/output types are appended after the
embedding step. For each vertex v ∈ V , we define a vector
xv ∈ R6 with the following properties:

• x1v = 1 if v = vin and 0 otherwise
• x2v = 1 if v = vout and 0 otherwise
• x3v = 1 if v is an argnode and 0 otherwise
• x4v = 1 if v is a node containing data that represents
an integer NOT part of a list, and 0 otherwise

• x5v = 1 if v is is a node containing data that represents
an integer that is part of a list, and 0 otherwise

• x6v = lV(v) if v is a node representing an integer and
0 otherwise

Thus, each xv is a vector with a positive entry in one or
two locations, with zeros in all other locations. In order to
make the dimensions of inputs consistent for passing into
a neural network, it may be necessary to pad inputs with
empty dummy vertices so that each input has the same size.

Propagation Model. GGNNs are recurrent networks which
transfer information among nodes based on the edge con-
nectivity of the underlying graph. Furthermore, they incor-
porate update and reset gates. Below is a series of equations
which defines the computational graph for the GGNN when
embedding a single vertex:

h(1)v = [x⊤v , 0]
⊤ (1)

a(t )v = A⊤
v [h

(t−1)⊤
1 . . .h(t−1)⊤

|V |
]⊤ + b (2)

z(t )v = σ
(
Wza(t )v + U

zh(t−1)v

)
(3)

r(t )v = σ
(
Wra(t )v + U

rh(t−1)v

)
(4)

h̃(t )v = tanh
(
Wa(t )v + U

(
rtv ⊙ h(t−1)v

))
(5)

h(t )v =
(
1 − z(t )v

)
⊙ h(t−1)v + z(t )v ⊙ h̃(t )v (6)

Equation (1) defines the initialization step, wherein the
note annotation is concatenated with the zero vector. Equa-
tion (2) propagates the information from the representation
of neighboring nodes. Equations (3) and (4) define the up-
date gate and reset gates, respectively, while the final two

equations (5) & (6) incorporate each gate into the representa-
tion for v at the t th timestep. σ refers to the logistic sigmoid
function and ⊙ is element-wise multiplication, as borrowed
from Li et al. [9].

We highlight here that for allv ∈ V and all t ∈ 1 . . .T , h(t )v ∈

RE , and we propose the initial parameter setting of E = 26.
We propose this dimension because of Balog et al.’s choice
to embed integers into R20 combined with the need to rep-
resent node annotations for the GGNN in R6. Further, we
remark that each Av ∈ RE |V |×2E and represents information
transfer between connected nodes. More explicitly, Av =

[Av,OUT ,Av, I N ] where Av,OUT ,Av, I N ∈ RE |V |×E and we
requre that Av,OUT has non-zero entries only in rows corre-
sponding to vectors v ′ such that (v,v ′) ∈ E while Av, I N has
non-zero entries only in rows corresponding to vectors v ′

such that (v ′,v) ∈ E. Li et al. are ambiguous about whether
these A matrices are to be fixed or variable with learning.
Fixing these matrices ensures that the transfer of information
from node to node proceeds exactly with the connections
present in the original graphs, whereas a learnt A allows the
network to add direct transfer capability between vertices
which are not connected by may be related.

Output Model. Li et al. suggest that, for graph-level out-
puts of GGNNs, one can define a representation vector as
follows:

hG = tanh

( ∑
v ∈V

σ
(
i(h(T )v , xv )

)
⊙ tanh

(
j(h(T )v , xv )

))
In this equation, i, j refer to separate neural networks. Thus,
σ (i(h(T )v , xv )) allows for representation of attention for each
node in the overall task for which j is the predictor. While we
have highlighted that attention may be useful for improving
the constituent function prediction task, our primary goal in
proposing the GGNN architecture is to provide the means
to encode basic structural relationships of the example data
and to allow for DSLs that capture more complex data struc-
tures. Thus, since DeepCoder achieves success in constituent
function prediction by simply concatenating the position-
independent embeddings of the input/output integers and
passing the result through a FFNN with no attention, we also
propose defining a representation vector as follows:

hconcat
G

= k(x1, h
(T )
1 , . . . x |V |, h

(T )
|V |

) (7)

Here, we define k to be a neural network analagous to that
of DeepCoder’s Encoder + Decoder structures, a FFNN ac-
cepting an input vector (x1, h(T )1 , . . . x |V |, h

(T )
|V |

) ∈ RE |V | and
producing an output hconcat

G
∈ RL , where L is the number of

functions available in the chosen DSL1. Since a FFNN does
not accept inputs of varying lengths, it is necessary to pad
1In the case of DeepCoder’s DSL, L = 34
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Figure 1: Graph transformation for inputs ([1, 3, 4]; 2) and
output [6, 5, 3]. Doubled circles contain the input data and
are the only nodes v for which lV is defined.

the input with empty vertex vectors 0 ∈ RE to a maximum
length.

4 DISCUSSION
In our review of the literature, we have summarized several
strategies that authors are presently using to solve the prob-
lem of teaching machines how to learn to code. At the basic
level, we have the distinction between program induction
(learning a program within a neural architecture without
producing source code) and program synthesis (generating
source code that solves a given problem). We find that these
strategies can provide comparable results with respect to the
generalizability of the solutions they generate.
Additionally, we find that attention and/or recurrence

are useful tools for the Neural Architectures used for pro-
gram synthesis, finding a generally positive trend between
increased attention and accuracy of results. This finding led
us to propose the use of a Transformer in the task of IPS,
since it appears to leverage high levels of attention in its
structure to great effect in related tasks.

Finally, we provide a concrete adaptation of GGNNs for use
in improving the performance, domain, and generalizability
of DeepCoder. Further work will include an implementation
of this adaptation into DeepCoder’s architecture and a study
of how this improves DeepCoder’s resulting generalizability
for programs in its original DSL. Additionally, we look to
expand this DSL to allow for manipulations of more com-
plex data structures like graphs, trees, and heaps using the
improved structural embedding provided by GGNNs.
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